INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2008-09 Statistics - II, Midterm Examination, March 6, 2009

1. Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are independent random samples, respectively, from $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$, where $-\infty < \mu_1, \mu_2 < \infty, \sigma^2 > 0$.

[10]

(a) Find minimal sufficient statistics for (μ_1, μ_2, σ^2) . Is it complete?

(b) Find the MLE and UMVUE of σ^2 .

2. For observations Y_1, \ldots, Y_n , consider the linear model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, n,$$

where x_i is the value of a co-variate corresponding to Y_i and ϵ_i are i.i.d. errors having the $N(0, \sigma^2)$ distribution. Here β_0 , β_1 and $\sigma^2 > 0$ are unknown parameters and x_i are treated as known constants.

(a) Show that the distribution of Y_1, \ldots, Y_n belongs to k-variate exponential family. Find k.

(b) Find minimal sufficient statistics for $(\beta_0, \beta_1, \sigma^2)$. Is it complete?

(c) Use properties of exponential family to set up equations and solve them to find MLE of $(\beta_0, \beta_1, \sigma^2)$. [10]

3. Consider a trial which ends up in 'Success' with probability p or 'Failure' with probability 1-p, 0 . Let X denote the number of independent trials required to obtain the first 'Success'.(a) Find the probability mass function of X.

(b) Find the Fisher information of p contained in X.

(c) Let X_1, \ldots, X_n be a random sample from the distribution of X. Find the Cramer-Rao lower bound on the variance of an unbiased estimator of $\frac{1}{p}$ based on this random sample. [10]

4. Consider a random sample X_1, X_2, \ldots, X_n from a population with density

 $f(x|\theta) = \exp(-(x-\theta))$, for $x > \theta$ where $\theta > 0$ is an unknown parameter.

(a) Find the minimal sufficient statistics T for θ .

(b) Assuming that T is complete, find the UMVUE of θ .

(c) Show that $\sum_{i=1}^{n} (X_i - \bar{X})^2$ and T are independent random variables. [10]

5.(a) Let S and T be two statistics such that S has finite variance. Show that

$$\operatorname{Var}(S) = \operatorname{Var}(\operatorname{E}(S|T)) + \operatorname{E}(\operatorname{Var}(S|T)).$$

(b) Suppose (X_1, X_2, \ldots, X_n) has probability distribution $P_{\theta}, \theta \in \Theta$. Let $\delta(X_1, X_2, \ldots, X_n)$ be an estimator of θ with finite variance. Suppose that T is sufficient for θ , and let $\delta^*(T)$, defined by $\delta^*(t) = E(\delta(X_1, X_2, \ldots, X_n)|T = t)$, be the conditional expectation of $\delta(X_1, X_2, \ldots, X_n)$ given T = t. Then using (a), and without applying Jensen's Inequality, prove that

$$E(\delta^*(T) - \theta)^2 \le E(\delta(X_1, X_2, \dots, X_n) - \theta)^2,$$

with strict inequality unless $\delta = \delta^*$, or equivalently, δ is already a function of T. [10]